

Chemical-free removal of copper, zinc, chrome, and nickel with chelating agent and cyanide destruction in rinse water and wastewater

White Paper

How ElectraMet[™] Works

The ElectraMet process uses a small amount of electricity to apply voltage and pH changes inside a cartridge to remove dissolved metals from a solution. Clean water is sent to the drain or reused at the plant while the recovered metals are flushed out as a highly concentrated stream for recycling as non-hazardous waste or solids disposal.

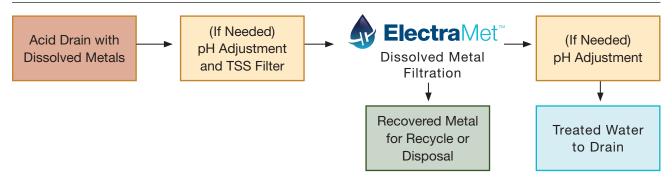
Project Background

PowerTech Water and four clients worked together to evaluate the ElectraMet chemical-free metals separation process for wastewater metal removal. In some cases, we partnered with Aclarity to use their chemical-free process for chelating agents and cyanide destruction. For these clients, we demonstrated:

- ElectraMet achieved removal rates up to 99% for dissolved zinc, copper, nickel, and chrome, with 99% water recovery.
- Aclarity destroyed cyanide and chelating agents to meet treatment targets.

Test Setup

- A raw water sample was collected from rinse water and wastewater streams and sent to PowerTech Water for analysis.
- Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the content of the water samples.
- Dissolved metals were quantified before and after ElectraMet treatment with Hach DR 3900 and ICP-MS.
- The ElectraMet cartridge was operated at less than 2V to separate metals from water samples.
- The Aclarity pretreatment system was operated at below 200W when cyanide and or chelating agent destruction was required.


White Paper

Results

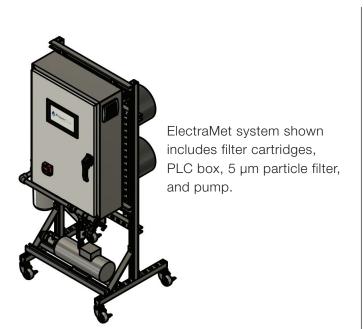
Customer	Contaminant	Wastewater Input (ppm)	Treated Output (ppm)	Discharge Limit	% Removed
1	Nickel	22.8	0.853	2.34	96.3%
	Zinc	0.84	< 0.02	not given	100.0%
2	Chrome (tot)	182	0.149	1.71	99.9%
	Nickel	4.00	0.02	2.38	99.5%
	Copper	1.80	< 0.001	2.07	100.0%
3	Cyanide	30.0	< 0.003	0.65	> 99.9%
	Zinc	3.60	0.16	1.5	95.6%
	Nickel	2.40	1.36	2.4	43.3%
	Copper	1.90	0.016	2.1	99.2%
4*	Nickel	356	1.55	not given	99.6%
	Zinc	1560	< 2	not given	> 99.9%

^{*}Ammonia-based chelating agent present

Process for Electrochemical Separation of Dissolved Metals

Process for Electrochemical Chelating Agent and Cyanide Destruction

Process Notes


- ElectraMet can replace or be installed as a post-treatment process to manufacturers' existing chemical treatment system, reducing overall chemical treatment cost and improving consistency to meet discharge requirements.
- Highly basic or acidic water may require pH adjustment for effective ElectraMet metals separation.
- A high concentration of chelating agents may require pretreatment for effective ElectraMet metals filtration. We partner with Aclarity for chemical-free cyanide and chelating agent pretreatment when required.

White Paper

ElectraMet™ Dissolved Metal Filtration System-20 gpm

1 H Hydrogen	ElectraMet Metals Separation: Effective Regions												He Helium				
3 Li Lithium	Be Beryllium										ore	B _{Boron}	6 Carbon	7 N Nitrogen	8 Oxygen	9 Fluorine	Ne Neon
Na Sodium	Mg Magnesium	• Other dissolved ions pass through the filter for discharge.										Al Aluminium	Si Silicon	P Phosphorus	S Sulfur	Chlorine	Ar Argon
19 K Potassium	Ca Calcium	Sc Scandium	Ti Titanium	Vanadium	Chromium	Mn Manganese	Fe Iron	Cobalt	Ni Nickel	Cu Copper	Zn Zinc	Ga Gallium	Ge Germanium	As Arsenic	Se Selenium	Br Bromine	Kr Krypton
Rb Rubidium	Sr Strontium	Y Yttrium	Zr Zirconium	Nb Niobium	Mo Molybdenum	TC Technetium	Ruthenium	Rh Rhodium	Pd Palladium	Ag Silver	Cd Cadmium	In Indium	Sn Tin	Sb Antimony	Te Tellurium	53 Iodine	Xe Xenon
Cs Caesium	Ba Barium	57 - 71 Lanthanoids	Hf Hafnium	Ta Tantalum	74 W Tungsten	Re Rhenium	OS Osmium	77 Ir	Pt Platinum	Au Gold	Hg Mercury	81 TI Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon
Fr Francium	Ra Radium	89 - 103 Actinoids	Rf Rutherfordium	Db Dubnium	Sg Seaborgium	Bh Bohrium	HS Hassium	Mt Meitnerium	DS Darmstadtium	Rg Roentgenium	Cn Copernicium	Nh Nihonium	Flerovium	Mc Moscovium	LV Livermorium	TS Tennessine	Og Oganesson

Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Sm Samarium	Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	HO Holmium	Erbium	Tm Thulium	Yb Ytterbium	Lu Lutetium
Ac Actinium	Th Thorium	Pa Protactinium	92 Uranium	Np Neptunium	Plutonium	Am Americium	Cm Curium	Bk Berkelium	Cf Californium	Es Einsteinium	Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium

Aclarity[™] Chelating Agent and Cyanide Destruction System-5 gpm

- Chelating Agent
- Cyanid
- Organics (COD)

To learn more about this and other ElectraMet applications, or to request a water sample evaluation, please visit our website http://electramet.com or contact an engineer at sales@electramet.com.

